
PCI-DAS6034, PCI-DAS6035, & PCI-DAS6036

Analog and Digital I/O Boards

User's Guide

PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036

Analog and Digital I/O

User's Guide

Document Revision 4A, May, 2009 © Copyright 2009, Measurement Computing Corporation

Trademark and Copyright Information

Measurement Computing Corporation, InstaCal, Universal Library, and the Measurement Computing logo are either trademarks or registered trademarks of Measurement Computing Corporation. Refer to the Copyrights & Trademarks section on <u>mccdaq.com/legal</u> for more information about Measurement Computing trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

© 2009 Measurement Computing Corporation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Measurement Computing Corporation.

Notice

Measurement Computing Corporation does not authorize any Measurement Computing Corporation product for use in life support systems and/or devices without prior written consent from Measurement Computing Corporation. Life support devices/systems are devices or systems that, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corporation products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.

Table of Contents

Preface About this User's Guide	7
What you will learn from this user's guide	7
Conventions in this user's guide	
Where to find more information	
	/
Chapter 1 Introducing the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036	
Overview: PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 features	
Software features	
Chapter 2 Installing the Board	9
What comes with your PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 shipment?	
Hardware	
Additional documentation	9
Optional components	
Unpacking the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036	
Installing the software	10
Installing the hardware	10
Configuring the hardware	
Differential input mode	
Single-ended input mode Non-referenced single-ended input mode	
DAQ-Sync configuration	
Connecting the board for I/O operations	
Connectors, cables – main I/O connector	
Pin out – main I/O connector	
DAQ-Sync connector and pin out Field wiring and signal termination	
Chapter 3	10
Functional Details	17
Basic architecture	
Auxiliary input & output interface	
DAQ-Sync signals	18
DAQ signal timing	
SCANCLK signal	
STARTSCAN signal A/D START TRIGGER signal	
A/D STOP TRIGGER signal	
SSH signal	
A/D CONVERT signal A/D PACER GATE signal	
A/D FACER OATE signal	
A/D STOP signal	
Waveform generation timing signals (PCI-DAS6035 and PCI-DAS6036 only)	
D/A START TRIGGER signal	
D/A CONVERT signal D/A EXTERNAL TIME BASE signal	
General-purpose counter signal timing	
CTR1 CLK signal	
CTR1 GATE signal	
CTR1 OUT signal	
CTR2 CLK signal CTR2 GATE signal	

CTR2 OUT signal	
Chapter 4 Calibrating the Board	
Introduction	
Calibration theory	
Chapter 5 Specifications	
Analog inputs. Accuracy System throughput Settling time Parametrics Noise performance	
Analog outputs (PCI-DAS6036 & PCI-DAS6035 only)	
Analog output pacing and triggering	
Analog input / output calibration	
Digital input / output	
Interrupts	
Counters	
Configurable AUXIN<5:0>, AUXOUT<2:0> external trigger/clocks	
DAQ-Sync inter-board triggers/clocks	
Power consumption	
Environmental	
Mechanical	
DAQ-Sync connector and pin out	
Main connector and pin out 8-channel differential mode pin out 16-channel single-ended mode	
Declaration of Conformity	

About this User's Guide

What you will learn from this user's guide

This user's guide explains how to install, configure, and use a PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 board so that you get the most out of the analog, digital, and timing I/O features.

This user's guide also refers you to related documents available on our web site, and to technical support resources.

Conventions in this user's guide

For more i	nformation on
Text present reading.	ted in a box signifies additional information and helpful hints related to the subject matter you are
Caution!	Shaded caution statements present information to help you avoid injuring yourself and others, damaging your hardware, or losing your data.
<#:#>	Angle brackets that enclose numbers separated by a colon signify a range of numbers, such as those assigned to registers, bit settings, etc.
bold text	Bold text is used for the names of objects on the screen, such as buttons, text boxes, and check boxes. For example:1. Insert the disk or CD and click the OK button.
<i>italic</i> text	<i>Italic</i> text is used for the names of manuals and help topic titles, and to emphasize a word or phrase. For example: The <i>Insta</i> Cal installation procedure is explained in the <i>Quick Start Guide</i> . <i>Never</i> touch the exposed pins or circuit connections on the board.

Where to find more information

For additional information relevant to the operation of your hardware, refer to the *Documents* subdirectory where you installed the MCC DAQ software (C:\Program Files\Measurement Computing\DAQ by default), or search for your device on our website at <u>www.mccdaq.com</u>.

If you need to program at the register level in your application, refer to the *STC Register Map for the PCI-DAS6000 Series*. This document is available at <u>www.mccdaq.com/registermaps/RegMapSTC6000.pdf</u>.

Introducing the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036

Overview: PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 features

This user's guide all of the information you need to install and use the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036. The three versions differ in the following ways:

- The PCI-DAS6035 and PCI-DAS6036 have two digital-to-analog outputs, while the PCI-DAS6034 has no digital-to-analog outputs.
- The PCI-DAS6036 provides 16-bit resolution on its analog outputs, while the PCI-DAS6035 provides 12-bit resolution on its analog outputs.

All three boards provide up to 16 analog inputs. Each input can be individually configured as single-ended or differential. The analog inputs have 16-bit resolution.

The input ranges are bipolar-only. They have four ranges of $\pm 10V$, $\pm 5V$, ± 500 mV, and ± 50 mV. The ranges are software-selectable.

The boards provide nine user-configurable trigger/clock/gate pins. They are available at a 100-pin I/O connector. Six are configurable as inputs and three are configurable as outputs. Refer to Chapter 3 "Functional Details") and Chapter 5 ("Specifications") for more information.

The PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 provide triggering and synchronization capability. There are five trigger/strobes and a synchronizing clock provided on a 14-pin header. Refer to Chapter 2 ("Installing your Board") and Chapter 5 ("Specifications") for more information on these signals.

Interrupts can be generated by up to seven ADC sources and four DAC sources. These interrupt sources are listed in Chapter 5 ("Specifications").

Each board contains an 82C54 counter chip, which consists of three 16-bit counters. Clock, gate, and output signals from two of the three counters are available on the 100-pin I/O connector. The third counter is used internally.

Software features

For information on the features of *Insta*Cal and the other software included with your PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036, refer to the *Quick Start Guide* that shipped with your device. The *Quick Start Guide* is also available in PDF at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf.

Check www.mccdaq.com/download.htm for the latest software version.

Installing the Board

What comes with your PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 shipment?

The following items are shipped with the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036.

Hardware

PCI-DAS6034, PCI-DAS6035, or PCI-DAS6036 board

PCI-DAS6036

Additional documentation

In addition to this hardware user's guide, you should also receive the *Quick Start Guide* (available in PDF at <u>www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf</u>). This booklet supplies a brief description of the software you received with your PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 and information regarding installation of that software. Please read this booklet completely before installing any software or hardware.

Optional components

If you ordered any of the following products with your board, they should be included with your shipment.

Cables

C100HD50-x

C100MMS-x

Signal termination and conditioning accessories

MCC provides signal termination products for use with the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036. Refer to the "<u>Field wiring and signal termination</u>" on page 16 for a complete list of compatible accessory products.

Unpacking the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036

As with any electronic device, you should take care while handling to avoid damage from static electricity. Before removing the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 from its packaging, ground yourself using a wrist strap or by simply touching the computer chassis or other grounded object to eliminate any stored static charge.

If any components are missing or damaged, notify Measurement Computing Corporation immediately by phone, fax, or e-mail:

- Phone: 508-946-5100 and follow the instructions for reaching Tech Support.
- Fax: 508-946-9500 to the attention of Tech Support
- Email: <u>techsupport@mccdaq.com</u>

Installing the software

Refer to the *Quick Start Guide* for instructions on installing the software on the *Measurement Computing Data Acquisition Software CD*. This booklet is available in PDF at <u>www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf</u>.

Installing the hardware

The PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 boards are completely plug-and-play. There are no switches or jumpers to set on the board. Configu**r**ation is controlled by your system's BIOS. To install your board, follow the steps below.

Install the MCC DAQ software before you install your board

The driver needed to run your board is installed with the MCC DAQ software. Therefore, you need to install the MCC DAQ software before you install your board. Refer to the *Quick Start Guide* for instructions on installing the software.

- 1. Turn your computer off, open it up, and insert your board into an available PCI slot.
- 2. Close your computer and turn it on.

If you are using an operating system with support for plug-and-play (such as Windows 2000 or Windows XP), a dialog box pops up as the system loads indicating that new hardware has been detected. If the information file for this board is not already loaded onto your PC, you will be prompted for the disk containing this file. The MCC DAQ software contains this file. If required, insert the *Measurement Computing Data Acquisition Software* CD and click **OK**.

3. To test your installation and configure your board, run the *Insta*Cal utility installed in the previous section. Refer to the *Quick Start Guide* that came with your board for information on how to initially set up and load *Insta*Cal.

Allow your computer to warm up for at least 15 minutes before acquiring data with these boards. The high speed components used on these boards generate heat and it takes this amount of time for a board to reach steady state if it has been powered off for a significant amount of time.

Configuring the hardware

All hardware configuration options on the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 are software controlled. You can select some of the configuration options using *Insta*Cal, such as the analog input configuration (16 single-ended or eight differential channels), the edge used for triggering when using an external pacer, and the source for the two independent counters. Once selected, any program that uses the Universal Library will initialize the hardware according to these selections.

Following is an overview of the available hardware configuration options for these boards. There is additional general information regarding analog signal connection and configuration in the *Guide to Signal Connections* (available on our web site at <u>www.mccdaq.com/signals/signals.pdf</u>).

Differential input mode

When all channels are configured for differential input mode, eight analog input channels are available. In this mode, the input signal is measured with respect to the low input. The input signal is delivered through three wires:

- The wire carrying the signal to be measured connects to CH# IN HI.
- The wire carrying the reference signal connects to CH# IN LO.
- The third wire is connected to LLGND.

Differential input mode is the preferred configuration for applications in noisy environments or when the signal source is referenced to a potential other than PC ground.

Single-ended input mode

When all channels are configured for single-ended input mode, 16 analog input channels are available. In this mode, the input signal is referenced to the board's signal ground (LLGND). The input signal is delivered through two wires.

- The wire carrying the signal to be measured connects to CH# IN HI.
- The other wire is connected to LLGND.

Non-referenced single-ended input mode

This mode is a compromise between differential and single-ended modes. It offers some of the advantages of each mode. Using non-referenced single-ended mode, you can still get noise rejection but not the limitation in the number of channels resulting from a fully differential configuration. The possible downside is that the external reference input must be the same for every channel. It is equivalent to configuring the inputs for differential mode and then tying all of the low inputs together and using that mode as the reference input.

When configured for non-referenced single-ended input mode, 16 analog input channels are available. In this mode, each input signal is not referenced to the board's ground, but to a common reference signal (AISENSE). The input signal is delivered through three wires.

- The wire carrying the signal to measure connects to CH# IN HI.
- The wire carrying the reference signal connects to AISENSE.
- The third wire is connected to LLGND.

This mode is useful when the application calls for differential input mode but the limitation on channel count prevents it.

DAQ-Sync configuration

You can interconnect multiple boards in the PCI-DAS6000 series to synchronize data acquisition or data output. To do this, order and install a CDS-14-x cable at the DAQ-Sync connectors (P2) between the boards to be synchronized.

The "x" in the CDS-14-x part number specifies the number of connectors available on the cable, and therefore, the number of boards you can interconnect. Using a CDS-14-2, you can connect two PCI-DAS6000 series boards together for I/O synchronization. Using a CDS-14-3, you can synchronize three boards, and so on. You can connect up to five PCI-DAS6000 series boards.

By default, all DAQ-Sync connectors are configured as inputs (slave mode). In order to be useful, one board must be set through software to serve as the master, and the signal sources of the slave boards must be defined. A CDS-14-3 cable is shown in Figure 3 on page 16.

Connecting the board for I/O operations

Connectors, cables - main I/O connector

The table below lists the board connectors, applicable cables and compatible accessory boards.

Connector type	Shielded SCSI 100 D-Type			
Compatible cables	C100HD50-x, unshielded ribbon cable. $x = 3$ or 6 feet (Figure 1)			
	C100MMS-x, shielded round cable. $x = 1, 2, or 3$ meters (Figure 2)			
Compatible accessory products	ISO-RACK16/P			
(with the C100HD50-x cable)	ISO-DA02/P (PCI-DAS6035 & PCI-DAS6036 only)			
	BNC-16SE			
	BNC-16DI			
	CIO-MINI50			
	CIO-TERM100			
	SCB-50			
Compatible accessory products	SCB-100			
(with the C100MMS-x cable)				

Board connectors, cables, accessory equipment

Pin out – main
I/O connector

8-channel differential mode

* Not available on the PCI-DAS6034

Signal Name	Pin		Pin	Signal Name
GND	100	••	50	GND
CTR2 OUT	99	••	49	AUXIN5 / A/D PACER GATE
CTR2 GATE	98	••	48	AUXIN4 / D/A START TRIGGER
CTR2 CLK	97	••	47	AUXIN3 / D/A UPDATE
GND	96	••	46 AUXIN2 / A/D STOP TRIGGER	
CTR1 OUT	95	••	45	AUXIN1 / A/D START TRIGGER
CTR1 GATE	94	••	44	n/c
CTR1 CLK	93	••	43	AUXIN0 / A/D CONVERT
DIO7	92	••	42	AUXOUT2 / SCANCLK
DIO6	91	••	41	AUXOUT1 / A/D PACER OUT
DIO5	90	••	40	AUXOUT0 / D/A PACER OUT
DIO4	89	••	39	PC +5 V
DIO3	88	••	38	D/A OUT1*
DIO2	87	••	37	D/A GND*
DIO1	86	• •	36	D/A OUT 0*
DIO0	85	• •	35	AISENSE
n/c	84	• •	34	n/c
n/c	83	••	33	n/c
n/c	82	••	32	n/c
n/c	81	••	31	n/c
n/c	80	••	30	n/c
n/c	79	••	29	n/c
n/c	78	••	28	n/c
n/c	77	••	27	n/c
n/c	76	••	26	n/c
n/c	75	• •	25	n/c
n/c	74	••	24	n/c
n/c	73	• •	23	n/c
n/c	72	••	22	n/c
n/c	71	••	21	n/c
n/c	70	••	20	n/c
n/c	69	••	19	n/c
n/c	68	••	18	LLGND
n/c	67	••	17	CH7 IN LO
n/c	66	••	16	
n/c	65	••	15	CH6 IN LO
n/c	64	••	14	
n/c	63 62	••	13 12	CH5 IN LO CH5 IN HI
n/c n/c	61	••	12	CH5 IN HI CH4 IN LO
n/c	60	••	10	CH4 IN LO CH4 IN HI
	59	••	9	CH4 IN HI CH3 IN LO
n/c	59	••	8	CH3 IN EO CH3 IN HI
	57	••	0 7	CH3 IN HI CH2 IN LO
	56	•••	6	CH2 IN LO
	55	••	5	CH2 IN HI CH1 IN LO
	54	••	3 4	CHTIN LO
	53	••	3	CHI IN HI CHO IN LO
	52		2	CHOIN EO
	51	•••	1	LLGND
1/6	51	ι	<u> </u>	

10 shared single anded	Signal Name	Pin		Pin	Signal Name
16-channel single-ended	GND	100	••	50	GND
mode	CTR2 OUT	99	••	49	AUXIN5 / A/D PACER GATE
	CTR2 GATE	98	••	48	AUXIN4 / D/A START TRIGGER
	CTR2 CLK	97	••	47	AUXIN3 / D/A UPDATE
* Not available on the PCI-	GND	96	••	46	AUXIN2 / A/D STOP TRIGGER
DAS6034	CTR1 OUT	95	••	45	AUXIN1 / A/D START TRIGGER
	CTR1 GATE	94	••	44	n/c
	CTR1 CLK	93	••	43	AUXIN0 / A/D CONVERT
	DIO7	92	••	42	AUXOUT2 / SCANCLK
	DIO6	91	••	41	AUXOUT1 / A/D PACER OUT
	DIO5	90	••	40	AUXOUT0 / D/A PACER OUT
	DIO4	89	••	39	PC +5 V
	DIO3	88	••	38	D/A OUT1*
	DIO2	87	••	37	D/A GND*
	DI01	86	••	36	D/A OUT 0*
	DIO0	85	••	35	AISENSE
	n/c	84	••	34	n/c
	n/c	83	••	33	n/c
	n/c	82	••	32	n/c
	n/c	81	••	31	n/c
	n/c	80	•••	30	n/c
	n/c	79	•••	29	n/c
	n/c	78	•••	28	n/c
		77		20	n/c
	n/c	76	••	26	
	n/c		••		n/c
	n/c	75 74	••	25	n/c n/c
	n/c n/c	74	••	24 23	n/c
		73	••	23	n/c
	n/c	71	••		n/c
	n/c	70	••	21	
	n/c	69	••	20	n/c n/c
	n/c	1	••	19	
	n/c	68	••	18	
	n/c	67	••	17	CH15 IN
	n/c	66	••	16	CH7 IN
	n/c	65	••	15	CH14 IN
	n/c	64	••	14	CH6 IN
	n/c	63	••	13	CH13 IN
	n/c	62	••	12	CH5 IN
	n/c	61	••	11	CH12 IN
	n/c	60	••	10	CH4 IN
	n/c	59	••	9	CH11 IN
	n/c	58	••	8	CH3 IN
	n/c	57	••	7	CH10 IN
	n/c	56	••	6	CH2 IN
	n/c	55	••	5	CH9 IN
	n/c	54	••	4	CH1 IN
	n/c	53	••	3	CH8 IN
	n/c	52	••	2	CH0 IN
	n/c	51	••	1	LLGND
	PCI	slot ↓		J	

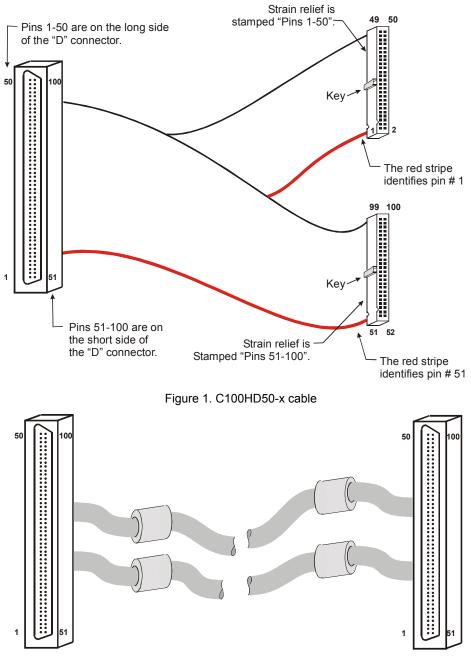


Figure 2. C100MMS-x cable

Details on these cables are available on our web site at <u>www.mccdaq.com/products/accessories.aspx</u>.

DAQ-Sync connector and pin out

DAQ-Sync connector & cable types

Connector type	14-pin right-angle 100 mil box header
Compatible cables	MCC p/n: CDS-14-x, 14 pin ribbon cable for board-to board DAQ-Sync connection; x = number of boards (Figure 3)

	Signal Name	Pin	-	Pin	Signal Name
[DS A/D START TRIGGER	1		2	GND
	DS A/D STOP TRIGGER	3		4	GND
	DS A/D CONVERT	5		6	GND
	DS D/A UPDATE	7	. = =	8	GND
[DS D/A START TRIGGER	9		10	GND
	RESERVED	11		12	GND
	SYNC CLK	13		14	GND
	14 13 14-pin Ribbon Cable		14	2	The red stripe identifies pin # 1

DAQ-Sync connector pin out (view from top)

Field wiring and signal termination

The following Measurement Computing accessory boards can be used with the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036:

Screw terminal boards and BNC adapters:

Use with the C100HD50-x cable:

- . CIO-MINI50 - 50-pin universal screw terminal accessory.
- CIO-TERM100 16x4 screw terminal. .
- SCB-50 50 conductor, shielded signal connection/screw terminal box provides two independent 50-pin connections.

Use with the C100MMS-x cable:

SCB-100 - 100 conductor, shielded signal connection/screw terminal box provides two independent 50-pin connections.

BNC connector boxes:

- BNC-16SE 16-channel single-ended BNC connector box.
- BNC-16DI Eight-channel differential BNC connector box.

Details on these products are available on our web site at www.mccdaq.com/products/screw terminal bnc.aspx.

ISO-5B module racks:

- ISO-RACK16/P 16-channel isolation module mounting rack.
- ISO-DA02/P (PCI-DA6035 and PCI-DAS6036 only) Two-channel, 5B module rack.

Details on these products are available on our web site at www.mccdaq.com/products/signal_conditioning.aspx.

Functional Details

Basic architecture

Figure 4 on page 19 is a simplified block diagram of the PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036. These boards provide all of the functional elements shown in the figure.

The System Timing and Control (STC) is the logical center for all DAQ, DIO, and DAC (if applicable) operations. It communicates over two major busses: a local bus and a memory bus.

The local bus carries digital I/O data and software commands from the PCI Bus Master. There are two Direct Memory Access (DMA) channels provided for data transfers to the PC.

Primarily, the memory bus carries A/D and D/A (PCI-DAS6035 and PCI-DAS6036 only) related data and commands. There are three buffer memories provided on the memory bus:

- The queue buffer (8K configuration memory) stores programmed channel numbers, gains, and offsets.
- The *ADC buffer* (8K FIFO [First In, First Out]) temporarily stores scanned and converted analog inputs.
- The *DAC 16K buffer* stores data to be output as analog waveforms (this buffer function only applies to the PCI-DAS6035 and PCI-DAS6036).

Auxiliary input & output interface

Each board's 100-pin I/O connector provides six software-selectable inputs, and three software-selectable outputs. The signals are user-configurable clocks, triggers and gates.

Refer to the "<u>DAQ signal timing</u>" section on page 20 for more explanation of these signals and their timing requirements.

The following table lists all of the possible and the default signals you use on the nine pins. D/A signals apply only to the PCI-DAS6035 and PCI-DAS6036.

/O Type Signal Name		Function				
AUXIN<5:0> sources A/D CONVERT		External ADC convert strobe (default)				
(software selectable)	A/D EXT. TIMEBASE IN	External ADC pacer time base				
	A/D START TRIGGER	ADC Start Trigger (default)				
	A/D STOP TRIGGER	ADC Stop Trigger (default)				
	A/D PACER GATE	External ADC gate (default)				
	D/A START TRIGGER	DAC trigger/gate (default) (PCI-DAS6035 and PCI-DAS6036 only)				
	D/A UPDATE	DAC update strobe (default) (PCI-DAS6035 and PCI-DAS6036 only)				
	D/A EXT. TIMEBASE IN	External DAC pacer time base (PCI-DAS6035 and PCI-DAS6036 only)				
AUXOUT<2:0> sources	STARTSCAN	A pulse indicating the start of conversion.				
(software selectable)	SSH	An active signal that negates at the start of the last conversion in a scan.				
	A/D STOP	Indicates end of an acquisition sequence				
	A/D CONVERT	ADC convert pulse (default)				
	SCANCLK	Delayed version of ADC convert (default)				
	CTR1 CLK	CTR1 clock source				
	D/A UPDATE	D/A update pulse (default) (PCI-DAS6035 and PCI-DAS6036 only)				
	CTR2 CLK	CTR2 clock source				
	A/D START TRIGGER	ADC Start Trigger Out				
	A/D STOP TRIGGER	ADC Stop Trigger Out				
	D/A START TRIGGER	DAC Start Trigger Out				
Default selections	AUXIN0	A/D CONVERT				
summary	AUXIN1	A/D START TRIGGER				
	AUXIN2	A/D STOP TRIGGER				
	AUXIN3	D/A UPDATE (PCI-DAS6035 and PCI-DAS6036 only)				
	AUXIN4	D/A START TRIGGER (PCI-DAS6035 and PCI-DAS6036 only)				
	AUXIN5	A/D PACER GATE				
	AUXOUT0	D/A UPDATE (PCI-DAS6035 and PCI-DAS6036 only)				
	AUXOUT1	A/D CONVERT				
	AUXOUT2	SCANCLK				

Auxiliary	I/O	signals
/ tuxinal y	<i>''</i> O	Signais

DAQ-Sync signals

The DAQ-Sync hardware provides the capability of triggering or clocking up to four slave boards from a master board to synchronize data input and/or output.

The PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 boards provide the capability of inter-board synchronization between boards in the PCI-DAS6000 family. There are five trigger/strobes and a synchronizing clock provided on a 14-pin header. The available signals are:

DS A/D START TRIGGER
DS A/D STOP TRIGGER
DS A/D CONVERT
DS D/A UPDATE (PCI-DAS6035 and PCI-DAS6036 only)
DS D/A START TRIGGER (PCI-DAS6035 and PCI-DAS6036 only)
SYNC CLK

Except for the SYNC CLK signal, the DAQ-Sync timing and control signals are a subset of the AUXIO signals available at the 100-pin I/O connector. These versions of the signals are used for board-to-board synchronization and have the same timing specifications as their I/O connector counterparts. Refer to the "DAQ signal timing" section on page 20 for explanations of signals and timing.

Use the SYNC CLCK signal to determine the master/slave configuration of a DAQ-Sync-enabled system. Each system can have one master and up to three slaves. SYNC CLK is the 40 MHz time base used to derive all board timing and control. The master provides this clock to the slave boards so that all boards in the DAQ-sync-enabled system are timed from the same clock.

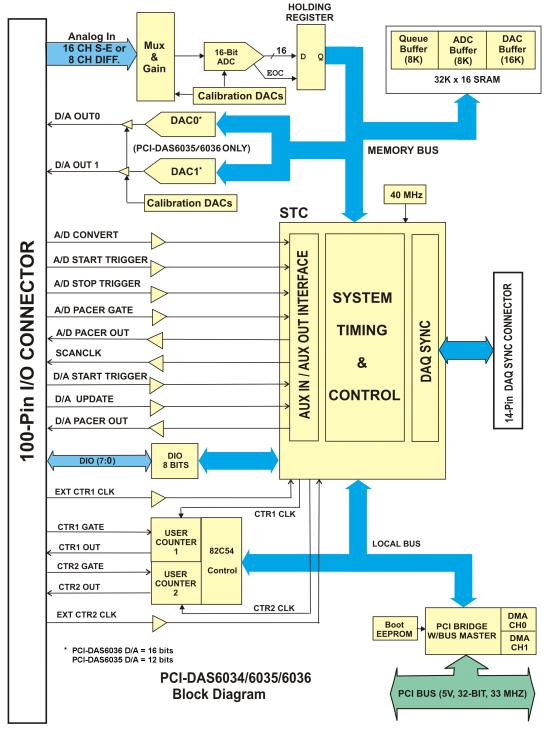


Figure 4. Block diagram - PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036

DAQ signal timing

The DAQ timing signals are:

- SCANCLK
- A/D START TRIGGER
- A/D STOP TRIGGER
- STARTSCAN
- SSH
- A/D CONVERT
- A/D PACER GATE
- A/D EXTERNAL TIME BASE
- A/D STOP

SCANCLK signal

SCANCLK is an output signal that may be used for switching external multiplexers. It is a 400 ns wide pulse that follows the CONVERT signal after a 50 ns delay. This is adequate time for the analog input signal to be acquired so that the next signal may be switched in. The polarity of the SCANCLK signal is programmable. The default output pin for the SCANCLK signal is AUXOUT2, but any of the AUXOUT pins may be programmed as a SCANCLK output.

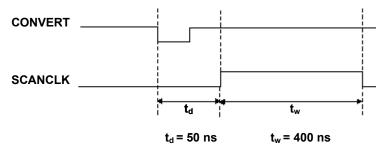


Figure 5. SCANCLK signal timing

STARTSCAN signal

The STARTSCAN output signal indicates when a scan of channels has been initiated. You can program this signal to be available at any of the AUXOUT pins. The STARTSCAN output signal is a 50 ns wide pulse the leading edge of which indicates the start of a channel scan. Figure 6 shows the timing for the STARTSCAN signal.

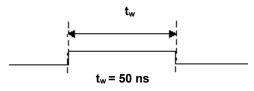


Figure 6. STARTSCAN start of scan timing

A/D START TRIGGER signal

Use the A/D START TRIGGER signal for conventional triggering (when you only need to acquire data after a trigger event). Figure 7 shows the A/D START TRIGGER signal timing for a conventionally triggered acquisition.

A/D Start Trigger					
Start Scan	j	į	ļ		
Convert	μ	ļu — I	<u>и </u>		<u>ار ا</u>
Scan Counter	4	3	2	1	0

Figure 7. Data acquisition example for conventional triggering

The A/D START TRIGGER source is programmable and may be set to any of the AUXIN inputs or to the DAQ-Sync DS A/D START TRIGGER input. The polarity of this signal is also programmable to trigger acquisitions on either the positive or negative edge.

The A/D START TRIGGER signal is also available as an output and can be programmed to appear at any of the AUXOUT outputs. Refer to Figure 8 and Figure 9 for A/D START TRIGGER input and output timing requirements.

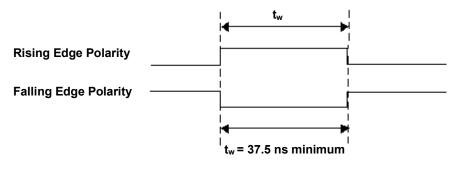


Figure 8. A/D START TRIGGER input signal timing

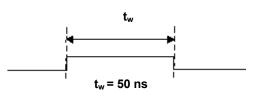


Figure 9. A/D START TRIGGER output signal timing

The A/D START TRIGGER signal is also used to initiate pre-triggered DAQ operations (when you need to acquire data just before a trigger event). In most pre-triggered applications, the A/D START TRIGGER signal is generated by a software trigger. The use of A/D START TRIGGER and A/D STOP TRIGGER in pre-triggered DAQ applications is explained next.

A/D STOP TRIGGER signal

Pre-triggered data acquisition continually acquires data into a circular buffer until a specified number of samples have been collected after the trigger event. Figure 10 illustrates a typical pre-triggered DAQ sequence.

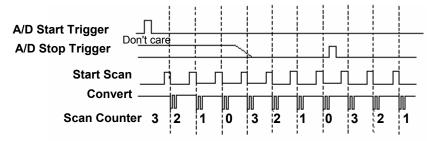


Figure 10. Pre-triggered data acquisition example

The A/D STOP TRIGGER signal signifies when the circular buffer should stop and when the specified number of post trigger samples should be acquired. It is available as an output and an input. By default, it is available at AUXIN2 as an input but may be programmed for access at any of the AUXIN pins or the DAQ-Sync – DS A/D STOP TRIGGER" input. It may be programmed for access at any of the AUXOUT pins as an output.

When using the A/D STOP TRIGGER signal as an input, the polarity may be configured for either rising or falling edge. The selected edge of the A/D STOP TRIGGER signal initiates the post-triggered phase of a pre-triggered acquisition sequence.

As an output, the A/D STOP TRIGGER signal indicates the event separating the pre-trigger data from the post-trigger data. The output is an active high pulse with a pulse width of 50 ns. Figure 11 and Figure 12 show the input and output timing requirements for the A/D STOP TRICCEP signal

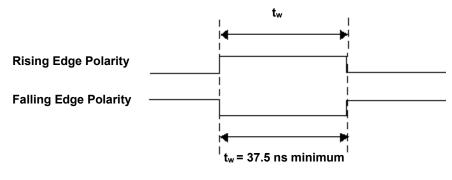


Figure 11. A/D STOP TRIGGER input signal timing

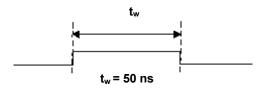


Figure 12. A/D STOP TRIGGER output signal timing

SSH signal

The SSH signal can be used as a control signal for external sample/hold circuits. The SSH signal is a programmable polarity pulse that is asserted throughout a channel scan. The state of this signal changes after the start of the last conversion in the scan. The SSH signal may be routed via software selection to any of the AUXOUT pins. Figure 13 shows the timing for the SSH signal.

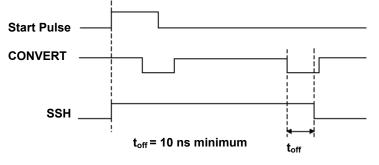


Figure 13. SSH signal timing

A/D CONVERT signal

The A/D CONVERT signal indicates the start of an A/D conversion. It is available through software selection as an input to any of the AUXIN pins (defaulting to AUXIN0) or the DAQ-Sync DS A/D CONVERT input and as an output to any of the AUXOUT pins.

When used as an input, the polarity is software selectable. The A/D CONVERT signal starts an acquisition on the selected edge. The convert pulses must be separated by a minimum of 5 μ s to remain within the 200 kS/s conversion rate specification.

Refer to Figure 7 and Figure 9 for the relationship of A/D CONVERT to the DAQ sequence. Figure 14 and Figure 15 show the input and output pulse width requirements for the A/D CONVERT signal.

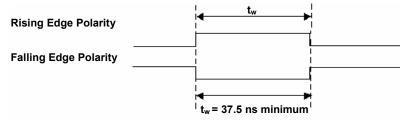


Figure 14. A/D CONVERT signal input timing requirement

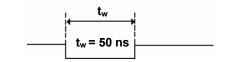
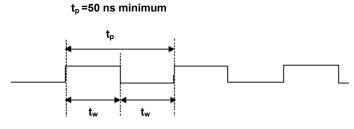


Figure 15. A/D CONVERT signal output timing requirement

The A/D CONVERT signal is generated by the on-board pacer circuit unless the external clock option is in use. This signal may be gated by hardware (A/D PACER GATE) or software.

A/D PACER GATE signal


The A/D PACER GATE signal is used to disable scans temporarily. This signal may be programmed for input at any of the AUXIN pins.

If the A/D PACER GATE signal is active, no scans can occur. If the A/D PACER GATE signal becomes active during a scan in progress, the current scan is completed and scans are then held off until the gate is de-asserted.

A/D EXTERNAL TIME BASE signal

The A/D EXTERNAL TIME BASE signal can serve as the source for the on-board pacer circuit rather than using the 40 MHz internal time base. Any AUXIN pin can be set programmatically as the source for this signal. The polarity is programmable.

The maximum frequency for the A/D EXTERNAL TIME BASE signal is 20 MHz. The minimum pulse width is 23 ns high or low. There is no minimum frequency specification. Figure 16 shows the timing specifications for the A/D EXTERNAL TIME BASE signal.

t_w=23 ns minimum

Figure 16. A/D EXTERNAL TIME BASE signal timing

A/D STOP signal

The A/D STOP signal indicates a completed acquisition sequence. You can program this signal to be available at any of the AUXOUT pins. The A/D STOP output signal is a 50 ns wide pulse whose leading edge indicates a DAQ done condition. Figure 17 shows the timing for the A/D STOP signal.

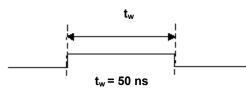
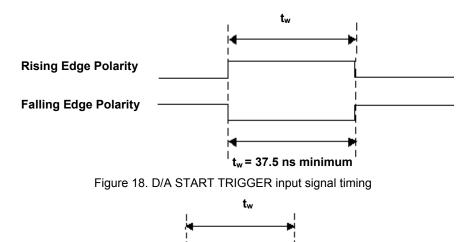


Figure 17. A/D STOP signal timing

Waveform generation timing signals (PCI-DAS6035 and PCI-DAS6036 only)

The signals that control the timing for the analog output functions on the PCI-DAS6035 and PCI-DAS6036 are:

- D/A START TRIGGER
- D/A START II
 D/A UPDATE
- D/A EXTERNAL TIME BASE


D/A START TRIGGER signal

The D/A START TRIGGER signal is used to hold off output scans until after a trigger event. The DAQ-Sync —DS D/ASTART TRIGGER" input or any AUXIN pin can be programmed to serve as the D/A START TRIGGER signal. It is also available as an output on any AUXOUT pin.

When used as an input, the D/A START TRIGGER signal may be software selected as either a positive or negative edge trigger. The selected edge of the D/A START TRIGGER signal causes the DACs to start generating the output waveform.

The D/A START TRIGGER signal can be used as an output to monitor the trigger that initiates waveform generation. The output is an active-high pulse having a width of 50 ns.

Figure 18 and Figure 19 show the input and output timing requirements for the D/A START TRIGGER signal.

t_w = 50 ns Figure 19. D/A START TRIGGER output signal timing

D/A CONVERT signal

The D/A CONVERT signal causes a single output update on the D/A converters. You can program the DAQ-Sync DS D/A UPDATE input or any AUXIN pin to accept the D/A CONVERT signal. It is also available as an output on any AUXOUT pin.

The D/A CONVERT input signal polarity is software selectable. DAC outputs update within 100ns of the selected edge. The D/A CONVERT pulses should be no less than 100 µs apart.

When used as an output, the D/A CONVERT signal may be used to monitor the pacing of the output updates. The output has a pulse width of 225 ns with selectable polarity.

Figure 20 and Eigure 21 show the input and autout timing requirements for the D/A CONTUEDT signal.

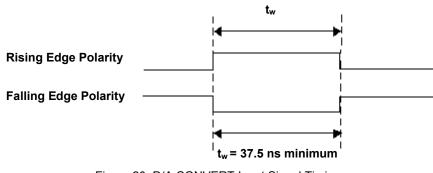


Figure 20. D/A CONVERT Input Signal Timing

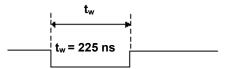
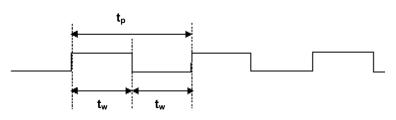


Figure 21. D/A CONVERT Output Signal Timing


D/A EXTERNAL TIME BASE signal

The D/A EXTERNAL TIME BASE signal can serve as the source for the on-board DAC pacer circuit rather than using the internal time base. Any AUXIN pin can be set programmatically as the source for this signal. The polarity is programmable.

The maximum frequency for the D/A EXTERNAL TIME BASE signal is 20 MHz. The minimum pulse width is 23 ns high or low. There is no minimum frequency specification.

Figure 22 shows the timing requirements for the D/A EXTERNAL TIME BASE signal.

t_p =50 ns minimum

t_w=23 ns minimum

Figure 22. D/A EXTERNAL TIME BASE signal timing

General-purpose counter signal timing

The general-purpose counter signals are:

- CTR1 CLK
- CTR1 GATE
- CTR1 OUT
- CTR2 CLK
- CTR2 GATE
- CTR2 OUT

CTR1 CLK signal

The CTR1 CLK signal can serve as the clock source for independent user counter 1. It can be selected through software at the CTR1 CLK pin rather than using the on-board 10 MHz or 100 kHz sources. It is also polarity programmable. The maximum input frequency is 10 MHz. There is no minimum frequency specified.

Figure 23 shows the timing requirements for the CTR1 CLK signal.

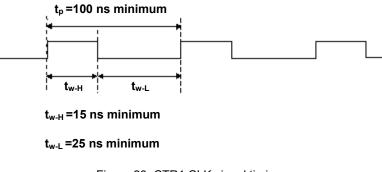


Figure 23. CTR1 CLK signal timing

CTR1 GATE signal

You can use the CTR1 GATE signal for starting and stopping the counter, saving counter contents, etc. It is polarity programmable and is available at the CTR1 GATE pin.

Figure 24 shows the minimum timing requirements for the CTR1 GATE signal.

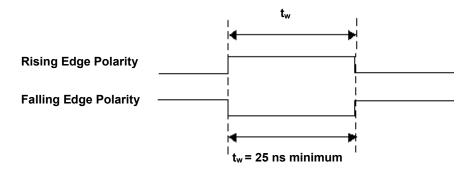


Figure 24. CTR1 GATE signal timing

CTR1 OUT signal

This signal is present on the CTR1 OUT pin. The CTR1 OUT signal is the output of one of the two user's counters in an industry-standard 82C54 chip.

For detailed information on counter operations, please refer to the data sheet on our WEB page at <u>www.measurementcomputing.com/PDFmanuals/82C54.pdf</u>.

Figure 25 shows the timing requirements for the CTR1 OUT signal for counter mode 0 and mode 2.

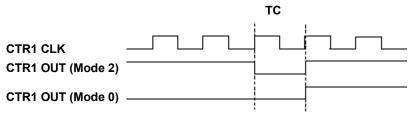


Figure 25. CTR1 OUT signal timing

CTR2 CLK signal

The CTR2 CLK signal can serve as the clock source for independent user counter 2. It can be selected through software at the CTR2 CLK pin rather than using the on-board 10 MHz or 100 kHz sources. It is also polarity programmable. The maximum input frequency is 10 MHz. There is no minimum frequency specified.

Figure 26 shows the timing requirements for the CTR2 CLK signal.

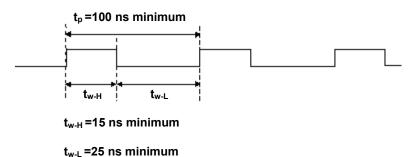


Figure 26. CTR2 CLK signal timing

CTR2 GATE signal

You can use the CTR2 GATE signal for starting and stopping the counter, saving counter contents, etc. It is polarity programmable and is available at the CTR2 GATE pin.

Figure 27 shows the timing requirements for the CTD2 CATE sizes

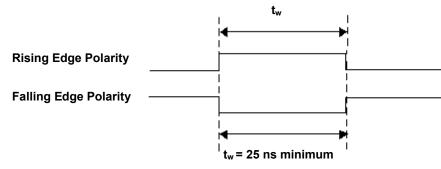


Figure 27. CTR2 GATE signal timing

CTR2 OUT signal

This signal is present on the CTR2 OUT pin. The CTR2 OUT signal is the output of one of the two user's counters in an industry-standard 82C54 chip.

For detailed information on counter operations, please refer to the data sheet on our web site at <u>www.measurementcomputing.com/PDFmanuals/82C54.pdf</u>.

Figure 28 shows the timing of the CTR1 OUT signal for mode 0 and for mode 2.

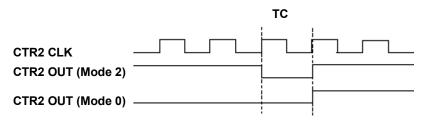


Figure 28. CTR2 OUT signal timing

Calibrating the Board

Introduction

You should calibrate the board (using the *Insta*Cal utility) after the board has fully warmed up. The recommended warm-up time is 15 minutes. For best results, calibrate the board immediately before making critical measurements. The high resolution analog components on the board are somewhat sensitive to temperature. Pre-measurement calibration ensures that your board is operating at optimum calibration values.

Calibration theory

Analog inputs are calibrated for offset and gain. Offset calibration for the analog inputs is performed directly on the input amplifier with coarse and fine trim DACs acting on the amplifier.

For input gain calibration, a precision calibration reference is used with coarse and fine trim DACs acting on the ADC (see Figure ²⁹)

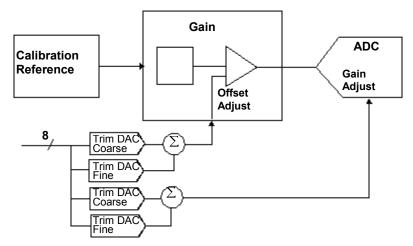


Figure 29. Analog input calibration elements

A similar method is used to calibrate the analog output components (PCI-DAS6035 and PCI-DAS6036 only). A trim DAC is used to adjust the gain of the DAC. A separate DAC is used to adjust offset on the final output amplifier. The calibration circuits are duplicated for both analog outputs (see Figure 30).

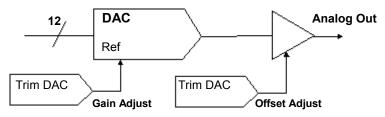


Figure 30. Analog output calibration elements

Specifications

Typical for 25 °C unless otherwise specified. Specifications in *italic text* are guaranteed by design.

Analog inputs

A/D converter	Successive approximation type, min 200 kS/s conversion rate.	
Resolution	16 bits, 1-in-65536	
Number of channels	16 single ended /8 differential, software selectable	
Input ranges	± 10 V, ± 5 V, ± 500 mV, ± 50 mV, software selectable	
A/D pacing	Internal counter – ASIC. Software selectable time base:	
	 Internal 40 MHz, 50 ppm stability 	
	 External source via AUXIN<5:0>, Software selectable. 	
	External convert strobe: A/D CONVERT	
	Software paced	
Burst mode	Software selectable option, burst rate = 5μ S.	
A/D gate sources	External digital: A/D GATE	
A/D gating modes	External digital: Programmable, active high or active low, level or edge	
A/D trigger sources	External digital: A/D START TRIGGER	
	A/D STOP TRIGGER	
A/D triggering modes	External digital: Software-configurable for rising or falling edge.	
	Pre-/Post-trigger: Unlimited number of pre-trigger samples, 16 Meg post-trigger samples.	
ADC pacer out	Available at user connector: A/D PACER OUT	
RAM buffer size	8 K samples	
Data transfer	DMA	
Programmed I/O		
DMA modes	Demand or non-demand using scatter gather.	
Configuration memory (see Note 1)	Up to 8 K elements in the queue. Programmable channel, gain, and offset.	
Streaming-to-disk rate	200 kS/s, system dependent	

Note 1: Mixing high gains (±500 mV, ±50 mV) with low gains (±10 V, ±5 V) within the channel-gain queue is not supported.

Accuracy

200 kS/s sampling rate, single channel operation and a 15-minute warm-up. Accuracies listed are for measurements made following an internal calibration. They are valid for operational temperatures within ± 1 °C of internal calibration temperature and ± 10 °C of factory calibration temperature. Calibrator test source high side tied to channel 0 high and low side tied to channel 0 low. Low-level ground is tied to channel 0 low at the user connector.

Range	Absolute Accuracy
±10 V	±10.2 LSB
±5 V	±10.9 LSB
±500 mV	±19.7 LSB
±50 mV	±40.6 LSB

Table 1. Absolute accuracy specifications

Range	% of Reading	Offset (μV)	Averaged Noise + Quantization (µV) ¹	Temp Drift (%/DegC)	Absolute Accuracy at FS (mV)
±10 V	0.0239	531	180	0.001	3.10
±5 V	0.0262	274	85	0.001	1.67
±500 mV	0.0467	54	12.3	0.001	0.30
±50 mV	0.0685	21.2	6.54	0.001	0.062

Table 2. Absolute accuracy components specifications - all values are (±)

¹ Averaged measurements assume averaging of 100 single-channel readings.

Each PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 is tested at the factory to assure the board's overall error does not exceed accuracy limits described in Table 1.

	All ranges	±0.5 LSB typ	±1.0 LSB max
--	------------	--------------	--------------

System throughput

Condition	Calibration Coefficients	ADC Rate (max)
1. Single channel, single input range	Per specified range	200 kS/s
2. Multiple channel, single input range	Per specified range	200 kS/s
3. Single channel, multiple input ranges	Default to value for cbAInScan() range parameter	200 kS/s

Note 2: For conditions 1-2 above, specified accuracy is maintained at rated throughput. Condition 3 applies a calibration coefficient which corresponds to the range value selected in cbAInScan(). This coefficient remains unchanged throughout the scan. Increased settling times may occur during gain-switching operations.

Settling time

Settling time is defined as the time required for a channel to settle to within a specified accuracy in response to a full-scale (FS) step. Two channels are scanned at the specified rate. A –FS DC signal is presented to channel 1; a +FS DC signal is presented to channel 0.

Condition	Range	Accuracy	iracy	
		±0.0031% (±2.0 LSB)	±0.0062% (±4.0 LSB)	
Same range to same range	±10 V	5 μS max	*	
	±5 V	5 µS max	*	
	±500 mV	5 μS typ	*	
	±50 mV	*	5 μS typ	

Parametrics

Max working voltage (signal + common-mode)	±11 V	
CMRR @ 60 Hz	±10 V range: 85 dB	
<u> </u>	±5 V range: 85 dB	
	±500 mV range: 93 dB	
	±50 mV range: 93 dB	
Small signal bandwidth, all ranges	413 kHz	
Input coupling	DC	
Input impedance	100 GOhm in normal operation.	
	2 kOhm typ in powered off or overload condition.	
Input bias current	±200 pA	
Input offset current	±100 pA	

Absolute maximum input voltage	 ±25 V powered on, ±15 V powered off. Protected inputs: CH<15:0> IN AISENSE
Crosstalk	Adjacent channels: -75 dB
	All other channels: -90 dB

Noise performance

Table 4 summarizes the noise performance for the PCI-DAS6036/6035/6034. Noise distribution is determined by gathering 50 K samples with inputs tied to ground at the user connector. Samples are gathered at the maximum specified single-channel-sampling rate. This specification applies to both single-ended and differential modes of operation.

Range	Typical Counts	LSBrms
±10 V	7	0.7
±5 V	7	0.7
±500 mV	11	1.1
±50 mV	45	5.6

Table 4. Analog input noise performance specifications

Analog outputs (PCI-DAS6036 & PCI-DAS6035 only)

	-	
	PCI-DAS6035	PCI-DAS6036
D/A converter type	Double-buffered, multiplying	Double-buffered, multiplying
Resolution	12-bits, 1-in-4096	16 bits, 1-in-65536
Number of channels	2 voltage output	2 voltage output
Voltage range	±10 V	±10 V
Monotonicity	12-bits, guaranteed monotonic	16-bits, guaranteed monotonic
DNL	±1 LSB max	$\pm 1 LSB max$
Slew rate	10 V/µs min	15 V/µs min
Settling time (full scale step)	10 μ s to ±0.5 LSB accuracy	5 μ s to ±1.0 LSB accuracy
Noise	200 µVrms, DC to 1 MHz BW	110 uVrms, DC to 400 kHz BW
Glitch energy	24 mV @ 2 μ S duration, mid-scale.	10 mV @ 1 μS duration, mid-scale
Current drive	±5 mA	±5 mA
Output short-circuit duration	Indefinite @ 25 mA	Indefinite @ 25 mA
Output coupling	DC	DC
Output impedance	0.1 ohms max	0.1 ohms max
Power up and reset	DACs cleared to 0 volts ±200 mV max	DACs cleared to 0 volts ± 21 mV max

Table 5. Analog output absolute accuracy specifications

Product	Range	Absolute Accuracy	
PCI-DAS6035	±10 V	±1.7 LSB	
PCI-DAS6036	±10 V	±7.9 LSB	

Table 6. Absolute Accuracy Components

Product	Range	% of Reading	Offset (mV)	Temp Drift (%/DegC)	Absolute Accuracy at FS (mV)
PCI-DAS6035	±10 V	±0.022	±5.93	±0.0005	±8.127
PCI-DAS6036	±10 V	±0.013	±1.10	± 0.0005	±2.417

Each PCI-DAS6035 and PCI-DAS6036 is tested at the factory to assure the board's overall error does not exceed the absolute accuracy specification listed in Table 5.

Product	Range	Relative Accuracy	
PCI-DAS6035	±10 V	±0.3 LSB, typical	±0.5 LSB, max
PCI-DAS6036	±10 V	-	±2.0 LSB, max

Table 7. Relative accuracy specifications

Relative accuracy is defined as the measured deviation from a straight line drawn between measured endpoints of the transfer function.

Analog output pacing and triggering

DAC pacing	Internal counter – ASIC. Selectable time base:	
(software programmable)	 Internal 40 MHz, 50 ppm stability. 	
	 External source via AUXIN<5:0>, software selectable. 	
	External convert strobe: D/A UPDATE	
	Software paced	
DAC gate source	External digital: D/A START TRIGGER	
(software programmable)	Software gated	
DAC gating modes	External digital: Programmable, active high or active low, level or edge	
DAC trigger sources	External digital: D/A START TRIGGER	
	Software triggered	
DAC triggering modes	External digital: Software-configurable for rising or falling edge.	
DAC pacer out	Available at user connector: D/A PACER OUT	
RAM buffer size	16 K samples	
Data transfer	DMA	
	Programmed I/O	
	Update DACs individually or simultaneously, software	
	Selectable.	
DMA modes	Demand or non-demand using scatter gather.	
Waveform generation throughput	10 kS/s max per channel, 2 channels simultaneous	

Analog input / output calibration

Recommended warm-up time	15 minutes
Calibration	Auto-calibration, calibration factors for each range stored on board in non-volatile RAM.
Onboard calibration reference	DC Level: 10.000 $V \pm 5$ mv. Actual measured values stored in EEPROM.
	Tempco: 5 ppm/°C max, 2 ppm/°C typical
	Long-term stability: 15 ppm, T = 1000 hrs, non-cumulative
Calibration interval	1 year

Digital input / output

Digital type	Discrete, 5V/TTL compatible
Number of I/O	8
Configuration	8 bits, independently programmable for input or output. All pins pulled up to +5 V via 47 K resistors (default). Positions available for pull-down to ground. Hardware selectable via solder gap.
Input high voltage	2.0 V min, 7.0 V absolute max
Input low voltage	0.8 V max, -0.5 V absolute min
Output high voltage (IOH = -32 mA)	3.80 V min, 4.20V typ
Output low voltage (IOL = 32 mA)	0.55 V max, 0.22 V typ

Data transfer	Programmed I/O
Power-up / reset state	Input mode (high impedance)

Interrupts

Interrupts	PCI INTA# - maj	pped to IRQn via PCI BIOS at boot-time
Interrupt enable	Programmable th	rough PLX9080
ADC interrupt sources	DAQ_ACTIVE:	Interrupt is generated when a DAQ sequence is active.
(software programmable)	DAQ_STOP:	Interrupt is generated when A/D Stop Trigger In is detected.
	DAQ_DONE:	Interrupt is generated when a DAQ sequence completes.
	DAQ_FIFO_1/4_	FULL: Interrupt is generated when ADC FIFO is ¹ / ₄ full.
	DAQ_SINGLE:	Interrupt is generated after each conversion completes.
	DAQ_EOSCAN:	Interrupt is generated after the last channel is converted in multi-channel scans.
	DAQ_EOSEQ:	Interrupt is generated after each interval delay during multi-channel scans.
DAC interrupt sources (software programmable)	DAC_ACTIVE:	Interrupt is generated when DAC waveform circuitry is active.
	DAC_DONE:	Interrupt is generated when a DAC sequence completes.
	DAC_FIFO_1/4_	EMPTY:
		Interrupt is generated DAC FIFO is ¹ / ₄ empty.
	DAC_HIGH_CH	ANNEL:
		Interrupt is generated when the DAC high channel output is updated.

Counters

User counter type	82C54
Number of channels	2
Resolution	16-bits
Compatibility	5V/TTL
CTRn base clock source (software selectable)	Internal 10 MHz, internal 100 KHz, or external connector (CTRn CLK)
Internal 10 MHz clock source stability	50 ppm
Counter n gate	Available at connector (CTRn GATE)
Counter n output	Available at connector (CTRn OUT)
Clock input frequency	10 MHz max
High pulse width (clock input)	15 ns min
Low pulse width (clock input)	25 ns min
Gate width high	25 ns min
Gate width low	25 ns min
Input low voltage	0.8 V max
Input high voltage	2.0 V min
Output low voltage	0.4 V max
Output high voltage	3.0 V min

Configurable AUXIN<5:0>, AUXOUT<2:0> external trigger/clocks

The PCI-DAS6036/6035/6034 provides nine user-configurable trigger/clock pins available at the 100-pin I/O connector. Of these, six are configurable as inputs while three are configurable as outputs.

AUXIN<5:0> sources	A/D CONVERT:	External ADC convert strobe	
(software selectable)	A/D TIMEBASE IN:	External ADC pacer timebase	
×	A/D START TRIGGER:	ADC Start Trigger	
	A/D STOP TRIGGER:	ADC Stop Trigger	
	A/D PACER GATE:	External ADC gate	
	D/A START TRIGGER	DAC trigger/gate	
	D/A UPDATE:	DAC update strobe	
	D/A TIMEBASE IN:	External DAC pacer timebase	
AUXOUT<2:0> sources	STARTSCAN:	A pulse indicating start of conversion	
(software selectable)	SSH:	Active signal that terminates at the start of the last	
		conversion in a scan.	
	A/D STOP:	Indicates end of scan	
	A/D CONVERT:	ADC convert pulse	
	SCANCLK:	Delayed version of ADC convert	
	CTR1 CLK:	CTR1 clock source	
	D/A UPDATE:	D/A update pulse	
	CTR2 CLK:	CTR2 clock source	
	A/D START TRIGGER:	ADC Start Trigger Out	
	A/D STOP TRIGGER:	ADC Stop Trigger Out	
	D/A START TRIGGER:	DAC Start Trigger Out	
Default selections:	AUXIN0:	A/D CONVERT	
	AUXIN1:	A/D START TRIGGER	
	AUXIN2:	A/D STOP TRIGGER	
	AUXIN3:	D/A UPDATE	
	AUXIN4:	D/A START TRIGGER	
	AUXIN5:	A/D PACER GATE	
	AUXOUT0:	D/A UPDATE	
	AUXOUT1:	A/D CONVERT	
	AUXOUT2:	SCANCLK	
Compatibility	5V/TTL		
Edge-sensitive polarity	Rising/falling, software selectable		
Level-sensitive polarity	Active high/active low, software selectable		
Minimum input pulse width	37.5ns		

DAQ-Sync inter-board triggers/clocks

The DAQ-Sync bus provides inter-board triggering and synchronization capability. Five trigger/strobe I/O pins and one clock I/O pin are provided on a 14-pin header. The DAQ-Sync signals use dedicated pins. Only the direction may be set.

DAQ-Sync Signals:	DS A/D START TRIGGER
	DS A/D STOP TRIGGER
	DS A/D CONVERT
	DS D/A UPDATE
	DS D/A START TRIGGER
	SYNC CLK

Power consumption

+5 V	0.9 A typical, 1.1 A max. Does not include power consumed through the I/O connector.
+5 V available at I/O connector	1 A max, protected with a resettable fuse

Environmental

Operating temperature range	0 to 55 °C
Storage temperature range	-20 to 70 °C
Humidity	0 to 90% non-condensing

Mechanical

Card dimensions	PCI half card: 174.4 mm (L) x 100.6 mm (W) x 11.65 mm (H)

DAQ-Sync connector and pin out

Connector type	14-pin right-angle 100 mil box header
Compatible cable	MCC p/n: CDS-14-x, 14-pin ribbon cable. x = number of boards (2 - 5)

Pin	Signal Name	
1	DS A/D START TRIGGER	
2	GND	
3	DS A/D STOP TRIGGER	
4	GND	
5	DS A/D CONVERT	
6	GND	
7	DS D/A UPDATE	
8	GND	
9	DS D/A START TRIGGER	
10	GND	
11	RESERVED	
12	GND	
13	SYNC CLK	
14	GND	

Main connector and pin out

Connector type	Shielded SCSI 100 D-type
Compatible cables	C100HD50-x, unshielded ribbon cable. x = 3 or 6 feet
	C100MMS-x, shielded round cable. x = 1, 2 or 3 meters
Compatible accessory products (with the C100HD50-x cable)	ISO-RACK16/P ISO-DA02/P (PCI-DAS6036/6035 only) BNC-16SE BNC-16DI CIO-MINI50 CIO-TERM100 SCB-50
Compatible accessory products (with the C100MMS-x cable)	SCB-100

8-channel differential mode pin out

Pin	Signal Name	Pin	Signal Name
1	LLGND	51	n/c
2	CH0 IN HI	52	n/c
3	CH0 IN LO	53	n/c
4	CH1 IN HI	54	n/c
5	CH1 IN LO	55	n/c
6	CH2 IN HI	56	n/c
7	CH2 IN LO	57	n/c
8	CH3 IN HI	58	n/c
9	CH3 IN LO	59	n/c
10	CH4 IN HI	60	n/c
11	CH4 IN LO	61	n/c
12	CH5 IN HI	62	n/c
13	CH5 IN LO	63	n/c
14	CH6 IN HI	64	n/c
15	CH6 IN LO	65	n/c
16	CH7 IN HI	66	n/c
17	CH7 IN LO	67	n/c
18	LLGND	68	n/c
19	n/c	69	n/c
20	n/c	70	n/c
21	n/c	71	n/c
22	n/c	72	n/c
23	n/c	73	n/c
24	n/c	74	n/c
25	n/c	75	n/c
26	n/c	76	n/c
27	n/c	77	n/c
28	n/c	78	n/c
29	n/c	79	n/c
30	n/c	80	n/c
31	n/c	81	n/c
32	n/c	82	n/c
33	n/c	83	n/c
34	n/c	84	n/c
35	AISENSE	85	DIO0
36	D/A OUT 0*	86	DIO1
37	D/A GND*	87	DIO2
38	D/A OUT1*	88	DIO3
39	PC +5 V	89	DIO4
40	AUXOUT0 / D/A PACER OUT	90	DIO5
41	AUXOUT1 / A/D PACER OUT	91	DIO6
42	AUXOUT2 / SCANCLK	92	DIO7
43	AUXIN0 / A/D CONVERT	93	CTR1 CLK
44	n/c	94	CTR1 GATE
45	AUXIN1 / A/D START TRIGGER	95	CTR1 OUT
46	AUXIN2 / A/D STOP TRIGGER	96	GND
47	AUXIN3 / D/A UPDATE	97	CTR2 CLK
48	AUXIN4 / D/A START TRIGGER	98	CTR2 GATE
49	AUXIN5 / A/D PACER GATE	99	CTR2 OUT
50	GND	100	GND

* = n/c on PCI-DAS6034

Pin	Signal Name	Pin	Signal Name
1	LLGND	51	n/c
2	CH0 IN	52	n/c
3	CH8 IN	53	n/c
4	CH1 IN	54	n/c
5	CH9 IN	55	n/c
6	CH2 IN	56	n/c
7	CH10 IN	57	n/c
8	CH3 IN	58	n/c
9	CH11 IN	59	n/c
10	CH4 IN	60	n/c
11	CH12 IN	61	n/c
12	CH5 IN	62	n/c
13	CH13 IN	63	n/c
14	CH6 IN	64	n/c
15	CH14 IN	65	n/c
16	CH7 IN	66	n/c
17	CH15 IN	67	n/c
18	LLGND	68	n/c
19	n/c	69	n/c
20	n/c	70	n/c
20	n/c	70	n/c
22	n/c	72	n/c
22	n/c	72	n/c
23	n/c	73	n/c
24	n/c	74	n/c
25		75	n/c
20	n/c n/c	76	n/c
27	n/c	78	n/c
20	n/c	78	n/c
30	n/c	80	n/c
30		81	
32	n/c	82	n/c
32	n/c	82	n/c
33	n/c n/c	84	n/c n/c
		85	DIOO
35	AISENSE		
36	D/A OUT 0* D/A GND*	86 87	DIO1 DIO2
37	D/A GND* D/A OUT1*		DIO2 DIO3
38		88	
39		89	DIO4
40		90	DIO5
41		91	DIO6
42		92	DIO7
43	AUXIN0 / A/D CONVERT	93	CTR1 CLK
44		94	CTR1 GATE
45	AUXIN1 / A/D START TRIGGER	95	CTR1 OUT
46	AUXIN2 / A/D STOP TRIGGER	96	GND
47		97	CTR2 CLK
48	AUXIN4 / D/A START TRIGGER	98	CTR2 GATE
49	AUXIN5 / A/D PACER GATE	99	CTR2 OUT
50	GND	100	GND

16-channel single-ended mode

* = n/c on PCI-DAS6034

CE Declaration of Conformity

Manufacturer:	Measurement Computing Corporation
Address:	10 Commerce Way
	Suite 1008
	Norton, MA 02766
	USA
Category:	Electrical equipment for measurement, control and laboratory use.

Measurement Computing Corporation declares under sole responsibility that the product

PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036

to which this declaration relates is in conformity with the relevant provisions of the following standards or other documents:

EC EMC Directive 2004/108/EC: General Requirements, EN 61326-1:2006 (IEC 61326-1:2005).

Emissions:

- EN 55011 (2007) / CISPR 11(2003): Radiated emissions: Group 1, Class A
- EN 55011 (2007) / CISPR 11(2003): Conducted emissions: Group 1, Class A

Immunity: EN 61326-1:2006, Table 3.

- IEC 61000-4-2 (2001): Electrostatic Discharge immunity.
- IEC 61000-4-3 (2002): Radiated Electromagnetic Field immunity.
- IEC 61000-4-4 (2004): Electric Fast Transient Burst Immunity.
- IEC 61000-4-5 (2001): Surge Immunity.
- IEC 61000-4-6 (2003): Radio Frequency Common Mode Immunity.
- IEC 61000-4-11 (2004): Voltage Interrupts.

To maintain compliance to the standards of this declaration, the following conditions must be met.

- The host computer, peripheral equipment, power sources, and expansion hardware must be CE compliant.
- All I/O cables must be shielded, with the shields connected to ground.
- I/O cables must be less than 3 meters (9.75 feet) in length.
- The host computer must be properly grounded.
- Equipment must be operated in a controlled electromagnetic environment as defined by Standards EN 61326-1:2006, or IEC 61326-1:2005.

Declaration of Conformity based on tests conducted by Chomerics Test Services, Woburn, MA 01801, USA in July, 2004. Test records are outlined in Chomerics Test Report #EMI3931.04. Further testing was conducted by Chomerics Test Services, Woburn, MA. 01801, USA in December, 2008. Test records are outlined in Chomerics Test report #EMI5216.08.

We hereby declare that the equipment specified conforms to the above Directives and Standards.

Cal Hangengen

Carl Haapaoja, Director of Quality Assurance

Measurement Computing Corporation 10 Commerce Way Suite 1008 Norton, Massachusetts 02766 (508) 946-5100 Fax: (508) 946-9500 E-mail: info@mccdaq.com www.mccdaq.com